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INTRODUCTION 

Terrence J. Sejnowski and Halbert White 

This book is about machines that learn to discover hidden relationships in data. A 
constant sfream of data bombards our senses and millions of sensory channels carry 
information into our brains. Brains are also learning machines that condition, 
combine, parse, and store data. Is it possible to learn something about learning by 
observing the style of computation used by brains? This is the motivation for 
research into computational devices that today are called "neural networks." Neural 
networks are nonlinear dynamical systems with many degrees of freedom that can 
be used to solve computational problems. The mathematical foundations for 
learning in this class of machines was laid by agroup of researchers in the 1940s and 
1950s. 

The achievement documented in this book is the thorough study of one of the 
simplest members of this class, feedforward networks with one layer of m w ~ a b l e  
weights connecting input units to output units. In a sense, these might be called 
reflex machines. The knee-jerk reflex, for example, is mediated by synaptic 
connections from the sensory recepton in your knee directly onto rnotoneurons in 
your spinal cord that in turn activate leg muscles. There are limits to how much 
computation can be accomplished by such reflexes, and these limits have been 
carefully delineated in this book. Just as more complex creatures evolved by 
layering control loops on the primitive reflexes, network models have also evolved 
in recent years and now have achieved vastly greater capabilities than reflex 
machines by making use of multilayered architectures with feedback connections. 
Nonetheless, recent work could not have been accomplished without building on 
these foundations. 

vii 
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Despite the early promise of research on neural networks, there was a period 
of about 20 years, from the mid 1960s to the mid 1980s. when interest in neural 
networks as computational devices and models of human behavior waned in favor 
of models based on symbol processing. There are many reasons for this, some of 
them now evident in this book. Still, Learning Machines was an underground 
classic among the neural network modelers who were active during this "dark age" 
and deserves to be better known to the generation that is "relearning" what was once 
known about statistical learning machines. The intuitive geometric explanations 
and the mathematical foundations in this monograph are as invaluable today as they 
were when it was first written. 

In the beginning ... 

Nilsson is one of a group of researchers who explored the potential of network 
models in the late 1950s and early 1960s. These included Frank Rosenblatt, H. 
David Block, Bernard Widrow, Ted Hoff, Marvin Minsky, Seymour Papert, Karl 
Steinbuch, Ross Ashby, Oliver Selfridge, Thomas Cover, Woody Bledsoe, Richard 
Duda, Peter Hart, and many more. There was great excitement about the potential 
of network learning techniques, but within a few years this line of research nearly 
disappeared as many of the principals took up other problems and used other 
approaches. Why this happened can be read between the lines of this book, and in 
other classics from the same era (Minsky and Papert 1969; Rosenblatt 1959; Duda 
and Hart 1973). Short but substantial, this monograph is so clearly written that, 25 
years later, one can precisely pinpoint the premises and roadblocks that held back 
further progress. 

Chapter 6 on layered machines goes to the very heart of the matter - how to 
handle additional layers of processing units in a multilayered architecture. These 
units are now called "hidden units" to distinguish them from units in the input and 
output layers that receive information or directly interact with the world outside of 
the network (Hinton and Sejnowski 1983). The hidden units of a network model 
code the higher-order structure in a problem and make possible the discovery of the 
relevant features for invariant pattern recognition. It is a difficult problem to 
discover these features directly from the data. This problem is not tackled head-on 
in this book, but rather, several interesting examples are analyzed, such as the 
committee machine studied in Section 6.2, in which the output unit always takes the 
majority vote of the hidden units. 

Despite some success at analyzing special cases, the conclusions reached in the 
1960s by the field as a whole were pessimistic. The field saw the problems of 
dealing with the unconstrained nonlinearities arising in multilayer machines as 

intractable, and in particular the difficulties of determining properties and training 
methods for multilayered machines as effectively insurmountable. For example, 
the judgement of Minsky and Papert, page 232 (Minsky and Papert 1969) was that 
"The percepaon [a single layer machine] has shown itself worthy of study despite 
(and even because of!) its severe limitations. It has many interesting features to 
attract attention: its intriguing learning theorem; its clear paradigmatic simplicity as 
a kind of parallel computation. There is no reason to suppose that any of these 
virtues carry over to the many-layered version. Nevertheless, we consider it to be 
an important research problem to elucidate (or reject) our intuitive judgment that the 
extension is sterile. Perhaps some powerful convergence theorem will be discov- 
ered, or some profound reason for the failure to produce an interesting "learning 
theorem" for multilayered machine will be found." This pessimism was not an 
offhand remark, but was the result of years of research culminating in a book that 
rfmains one of the best available treatises on neural networks. 

Largely for these reasons, mainstream attention shifted to alternative ap- 
proaches in intelligence that were more promising. The present and now 
fairly mature field of artificial intelligence based on logic and rules owes much to 
this shift, and Nilsson has made important contributions to this field. Only when the 
limitations of a strictly rule-based approach became apparent in the early 1980s was 
attention drawn again to the potential of massively parallel networks for modeling 
the complexities of the world. As we summarize in this introduction, some but not 
all of the problems raised in the book have now been surmounted. The "sterility" 
predicted by Minsky and Papert was a failure to imagine interesting architectures 
more powerful than the simple percepmn and less powerful than a general purpose 
computer. Today, there is an explosion of interesting architectures and demon- 
strable fecundity. 

Threshold logic units and sigmids 

This book is based almost entirely on processing units that have threshold nonlin- 
earities. McCulloch and Pitts (McCulloch and Pitts 1943 ) had shown that, in 
principle, networks of these units could compute any computable function. This 
existence proof was influential in the evolution of general-purpose digital comput- 
ers (Minsky and Papert 1%9); however, it was no help when attempts were made 
to design learning networks based on threshold logic units (TL,Us). The problem 
was that the class of networks for which learning theorems existed was too weak to 
support difficult computational problems, and no learning theorems were then 
known for more complex networks that could solve these problems. This book 
provides a clear exposition of the results for the class of functions that can be rep- 
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resented by feedforward networks of TLU's with a single layer of modifiable 
weights, culminating in the fundamental training theorem in Chapter 5. However, , 
there are many points in the book where unsolved problems arosein trying to extend 
these results to more general contexts, particularly in the last two chapters. 

For example, unsolved difficulties arose in Chapter 6 in obtaining weight ad- 
justment procedures for multilayered architectures; the techniques considered 
pertain to training only a single layer of TLUs. In Chapter 7, the difficulties of error- 
correction training from "overlapping" patterns generated by probabilisticphenom- 
ena are acknowledged, error correction training is then set aside for nonpamnetric 
techniques based on mode-seeking. The latter is certainly appealing, but presents 
its own difficulties, especially in cases with high-dimensional input spaces. Inci- 
dentally, the use of the terms parametric and nonparametric has shifted since this 
book was written, and all the methods in this book would now fall into the class of 
parametric models - those models with a fixed, finite set of adjustable parameters. 
Nonparametric techniques now include those that do not have a fmed set of 
parameters, such as kernel methods (Wertz 1978; Marron 1985) and spline 
techniques (Wahba and Wold 1975; Cox 1984). The possibility of adding 
processing units to networks has been raised by Baum (Baum 1989). 

In Chapter 2, Nilsson lucidly addresses the capacity of networks built from 
TLUs. Important theorems by Cover and others are presented and generalized. 
Researchers who later rediscovered these results could have been spared the effort 
by reading this chapter. The origin of the "rule of thumbn that each weight in a 
network of TLU's can store about 2 bits of information can be found here, a result 
that has subsequently been generalized to processing units with smooth nonlineari- 
ties (?&chison and Durbin 1989; Baum and Haussler 1989). Major advances have 
been made in the last few years in analyzing networks of TLUs and units that use 
sigmoids and other smooth functions instead of discontinuous threshold functions. 
We now understand the ability of this class of feedforward networks to represent 
multivariate continuous functions (for example, Hornik, Stinchcombe et al. 1989a 
and 1989b in press) and we now have learning algorithms that can be used to train 
them. By replacing the discontinuous threshold function with a smooth one, it 
becomes possible to compute error gradients in multilayer feedforward networks. 
The method of emr  backpropagation (Werbos 1974; Parker and Denker 1986; 
Rumelhart, Hinton et al. 1986) exploited this analytical flexibility to remove the 
final obstacles to training multilayer machines. Many variant learning procedures 
for feedforward networks have been developed, including networks using radial 
basis functions (Moody and Darken 1989; Poggio and Girosi 1989). Convergence 
results for such learning procedures have been rigorously established by White 
(White 1989 in press). 

This new class of learning algorithms has been applied to a number of difficult 
problems in speech recognition (Lippmann 1989; Waibel1989) , optical character 
recognition (LeCun, Boser et al. 1990), and games (Tesaun, 1989). However, there 
is a severe restriction on the complexity of learning for some problems (Judd 1988). 
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For many problems, such as the parity problem and simple geometrical problems 
such as connectedness (Minsky and Papert 1969) , the training time and the number 
of hidden units grows rapidly with the size of the problem. These are problems that 
require modifications in the architecture to achieve practical solutions. For 
example, the introduction of multiplicative synapses allows a practical solution to 
the parity problem for a feedforward network (Durbin and Rumelhart 1989). The 
extension of feedforward networks by including feedback (recurrent) connections 
allows the short-term memory of partially processed information to be used as part 
of the computation. Such networks are being analyzed with techniques from 
nonlinear dynamical systems (Hirsh 1989). 

The study of recurrent networks has been greatly aided by the generalization 
of the backpropagation learning procedure to recurrent networks (Pineda 1987; 
Pineda 1989; Almeida 1987; Jordon 1986; Elman 1988). For example, these new 
learning procedures have recently been used to solve the correspondence problem 
for matching random-dot stereograms of transparent surfaces (Qian and Sejnowski 
1988). Network architectures are now being explored that exhibit relaxation on 
multiple time scales and others that produce limit cycles rather than fixed-point 
solutions. Learning algorithms have also been developed for training recurrent 
networks to recognize temporal sequences and to produce spatio-temporal trajec- 
tories (Pearlmutter 1989; Williams and Zipser 1989). A rigorous study of the 
convergence properties of learning in recurrent networks has been initiated by Kuan 
(Kuan 1989). Many open questions remain to be examined. 

The complexity of layered networks is an active area of research (Abu- 
Mostafa 1989; Baum 1989). Perhaps themost important open questions concern the 
rate of convergence of multilayered learning machines as a function of the number 
of processing units in the middle or "hidden" layers. How does the approximation 
of the network to the desired function improve with the number of hidden units? 
How much is required to achieve a particular level of performance as the difficulty 
of the problem increases? Practical applications of mu1 tilayered neural networks to 
problems in the real-world will depend the answers to these questions. 

Probabilistic techniques 

The emphasis of this book is primarily on deterministic methods for solving 
deterministic classification problems. This is an appropriate place to start, but the 
treatment of probabilistic methods is of paramount importance for realistic appli- 
cations. Chapter 3 covers the problem of choosing a training set when the 
distribution of input patterns is known. The special case of multivariate normal 
dismbutions is treated in sections 3.7 and 3.1 1, and further consideration given in 
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Chapter 7, but the treatment given to this part of the learning paradigm is too brief. 
In most real-world applications the distributions are unknown andarerarelynormal. 
One of the strengths of the recent advances in learning algorithms is their ability to 
adapt to a wide range of distributions. Probabilistic methods are now a major tool 
for constructing and analyzing nonlinear network models. 

One of the fust stochastic network models to be studied in the modem era was 
the Boltzmann machine (Hinton and Sejnowski 1983), based on the associative 
networks introduced by Hopfield (Hopfield 1982). The Boltzmann machine uses 
binary units and a stochastic update rule to avoid 1 minima. The behavior of the 
network can be analyzed with techniques borrowed from statistical mechanics. A 
learning algorithm was discovered for the Bolmann machine that provided the 
fust counterexample to the conjecture by Minsky and Papert that extensions of the 
perceptron leaming rule to multilayered networks of TLU's was not possible 
(Hinton and Sejnowski 1986). The gradients of the weights are estimated by 
computing the local statistical averages for co-occurrences between pairs of units. 
The process of statistical averaging is slow to simulate on a sequential digital 
machine, which must also simulate noise, but there are now VLSI chips that can 
perform these operations in parallel very quickly (Alspector, Gupta et al. 1989). A 
deterministic version of the Boltzmann machine based on the mean field approxi- 
mation also looks very promising (Peterson and Harunan 1989; Hinton and Sejnow- 
ski 1986). 

Another important use of probabilities is in the specification of input target 
patterns and in proving asymptotic results for learning algorithms when inputs are 
presented as a sample from some probability distribution. There is arich connection 
with the field of stochastic approximation and powerful asymptotic results are now 
available for analyzing the convergence of learning rules (White 1990 in press). 
These results provide a solution for the problems arising in error-correction training 
from overlapping probabilistic patterns encountered in Chapter 7. In particular, 
theorems on stochastic approximation establish that use of a learning rate ("correc- 
tion increment" in Nilsson's terminology) declining to zero at an appropriate rate 
with the accumulating presentation of training examples leads to a correct proba- 
bilistic classification in the limit. It is the constant leaming rate that created the 
difficulties that Nilsson notes in section 7.3. 

Neurons and VLSI 

When this book was published in 1965, computers were built from discrete 
components. This has dramatically changed with the development of very large- 
scale integrated circuits (VLSI),a technology that has contributed to the exponential 

rise in the computational power of digital machines. It is now possible to simulate 
large network models; however, these simulations do not take advantage of the 
inherent parallelism of aneural network, nor do they exploit the fundamental analog 
nature of the processing units. However, conventional VLSI technology can also 
be used to directly implement networks using analog circuits. Already, it is possible 
to build dynamical networks for early sensory processing using analog VLSI (Mead 
1989), and leaming chips are sure to follow (Schwartz, Howard et al. 1989; 
Alspector, Gupta et al. 1989). There are still technical problems inherent in analog 
processing, such as variability, low accuracy and narrow dynamic range. These 
problems must be solved, or rather understood and exploited, before real learning 
machines become a reality. Neurons are also limited by low accuracy and limited 
dynarnical range, so there is some hope that these problems are surmountable. 

Neural network models have been simulated on a wide variety of digital 
machines, including coarse-grain and fine-grain parallel architectures. Learning 
machines made from silicon and optics are also being built that will be far faster and 
more powerful than current simulations of networks. Special purpose hardware 
should reduce the power dissipation per unit computation performed by networks 
by factors of thousands to millions (Mead 1989). At present, this research is 
exploratory, but there are already a number of VLSI chips that demonstrate 
feasibility. The promise of fast, adaptive, and inexpensive but powerful computers 
based on the principles of neural computation, is a driving force behind much of the 
current research in this field. 

There is also the hope, expressed in the term "neural network", that understand- 
ing this class of computing devices will provide insights into the function of the 
brain (Sejnowski. Koch et al. 1988). The network level, one of many in the brain, 
comes between the level of neurons and structured groups of interacting networks 
such as columns and maps as illustrated in Figure 1 on page xiv. The principles of 
neural computation span all of these levels. The current network architectures are 
relatively simple compared to those that are found in brains, which are highly 
evolved and often are very specialized (Shepherd 1990). 

Some general lessons have been learned concerning the style of distributed 
representation in populations of neurons by using learning algorithms (Zipser and 
Andersen 1988 ; Lehky, Sejnowski et al. 1988; Anastasia andRobinson 1989). The 
learning algorithms are used to construct networks that perform particular tasks, not 
to model learning in real neural systems. The advantage is that afterwards the 
modeler can test the properties of the model neurons and compare them with those 
found in real brains. In the model networks it is often not easy to guess the function 
of a single neuron from its response properties or even from the distribution of 
properties in a population of neurons. Models may be indispensible for improving 
our intuition about distributed processing and demonstrating computational prin- 
ciples. But before we can make detailed comparisons between the brain and sim- 
plifying network models, the complexity of the processing units in these models 
must approach that of real neurons (Shepherd 1990). It may be possible to model 
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Figure 1. Structural levels of organization in the nervous system. The spatial scale 
at which anatomical organizations can be identified varies over many orders of 
magnitude. Schematic diagrams illustrate (top) a cortex; (center) a small network 
model for the synthesis cortex; and (bottom) the structure of a chemical synapse. 
Relatively little is known about the properties at the network level in comparison 
with the detailed knowledge we have of synapses and the general organization of 
pathways in sensory and motor system. 

the dynamic nonlinearities in a single neuron by a micro-network model. Ironically, 
this would lead to a view of the neuron itself as a "neural network." 

Past as prologue 

The 20-year hiatus in the development of neural networks is difficult to explain. 
Many sociological explanations have been offered, such as overselling, under- 
funding and conspiracy. None of these seem as important, however, as the simple 
explanation that the problems encountered were technically very difficult. The lack 
of computer power t simulate large networks is often cited as a crucial factor, but 
there were severe theoretical limitations as well. What could have prevented this 
delay? For one, it is likely that interactions between fields would have greatly 
improved the likelihoodof hitting on a profitable approach. The theory of stochastic 
approximation, which has flourished over the last 35 years, has had a major impact 
on the modern formulation of learning problems (White, 1990). Methods from the 
physics of collective phenomena have been critically important conceptually as 
well as technically (Hopfield 1982; Arnit 1989). Biological systems are a source 
of ideas that will not soon dry up (Sejnowski, Koch and Churchland 1988). This 
cross-fertilization is just now beginning, but it could have happened decades ago. 
The problem of communication between the sciences may be a sociological 
explanation that is even more fundamental. 

Several methodological lessons are apparent upon rereading the book in the 
light of what we now know. The fmt lesson to be drawn here is that small 
reformulations of a problem can greatly change the possibilities of making progress. 
The change from TLUs to sigrnoids might not seem like a major reformulation, but 
by using continuous rather than discontinuous functions, it became possible to 
generalize the Widmw-Hoff and perceptron learning algorithms to multilayered 
networks. This has had a dramatic impact not only on the mathematical analysis, 
but on practical applications as well. The general problem of learning the structure 
of complex real-world data using neural networks has by no means been solved. It 
is likely that further changes need to be made to the current generation of models 
to make them more powerful, just as the generalization of TLUs to sigmoid nonlin- 
earities made it possible to overcome other difficulties. 

Another lesson is the importance of experimentation. Nonlinear network 
models can now be explored through simulations to get intuitions for what works 
and what does not. Computer power sufficient to explore multilayer network 
models was not available until quite recently, and without empirical successes it is 
unlikely that anyone would have looked for proofs of convergence. On the other 
hand, when experiments fail, it may not be obvious why, or in what direction to go 
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next. Interaction between practical experimentation and formal theory is essential 
for long-term progress. This interaction is flourishing and the continued health of 
the field depends on it. 

The recent revival of neural networks was strongly influenced by the publica- 
tion of the books on Parallel Distributed Processing (PDP) by Rumelhart and 
McClelland (Rumelhart and McClelland 1986). Nilsson's book did not have such 
an influence, probably because it came at a time of transition, away rather than 
toward neural computation. Also, itendsnoton a high point, but on aconfusingnote 
regarding the status of multilayer machines. No general guidance is offered except 
the hope that some progress could be made by looking at special cases. Nonetheless, 
the book influenced a generation of neural network modelers who were concerned 
about the mathematical foundations of their field. In this way it may continue to 
serve the next generation. 

Anyone interested in the foundations of neural networks and learning in 
parallel distributed processing systems should read this monograph. 'There are 
many valuableinsights andalso significant lessons tobelearned. As we tackle more 
and more difficult problems in representing and learning in nonlinear dynamical 
systems, the strength of our foundations becomes more and more important. 
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